Lung overexpression of angiostatin aggravates pulmonary hypertension in chronically hypoxic mice.
نویسندگان
چکیده
Exposure to hypoxia leads to the development of pulmonary hypertension (PH) as a consequence of pulmonary smooth muscle hyperplasia. Hypoxia concomitantly stimulates lung expression of angiogenic factors. To investigate the role of angiogenesis processes in development of hypoxic PH, we examined the effects of lung overexpression of angiostatin, an angiogenesis inhibitor, on development of hypoxic PH and lung endothelial cell (EC) density. Angiostatin delivery was achieved by a defective adenovirus expressing a secretable angiostatin K3 molcule driven by the cytomegalovirus promoter (Ad.K3). Comparison was made with a control vector containing no gene in the expression cassette (Ad.CO1). Treatment with Ad.K3 (300 plaque-forming units [pfu]/cell) inhibited cultured human pulmonary artery EC migration by 100% and proliferation by 50%, but was without effects on human pulmonary artery smooth muscle cells. After intratracheal administration of Ad.K3 (109 pfu) to mice, angiostatin protein became detectable in bronchoalveolar lavage fluid. Mice pretreated with Ad.K3 1 d before a 2-wk exposure to hypoxia (10% O2) showed more severe pulmonary hypertension than Ad.CO1-pretreated controls, as assessed by higher right ventricular systolic pressure (36.5 +/- 2.4 versus 30.2 +/- 1.4, respectively), aggravation of right ventricular hypertrophy (P < 0.05), and muscularization of distal vessels (P < 0.01). Lung factor VIII, CD31 immunostaining, as well as eNOS expression were significantly increased after exposure to hypoxia in Ad.CO1-pretreated controls, but decreased in both normoxic and hypoxic animals after treatment with Ad.K3. The results show that inhibition of hypoxia-induced stimulation of lung angiogenic processes aggravates development of hypoxic PH. This suggests that endogenous lung angiogenesis counteracts development of hypoxic PH.
منابع مشابه
Inhibition of 5-Lipoxygenase Activating Protein in Hypoxic Rats
Chronically elevated shear stress and inflammation are important in hypertensive lung vessel remodeling. We postulate that 5-lipoxygenase (5-LO) is a molecular determinant of these processes. Immunohistology localized the 5-LO to macrophages of normal and chronically hypoxic rat lungs and also to vascular endothelial cells in chronically hypoxic lungs only. In situ hybridization of normal and c...
متن کاملHIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes.
Vascular remodeling resulting from altered pulmonary arterial smooth muscle cell (PASMC) growth is a contributing factor to the pathogenesis of hypoxic pulmonary hypertension. PASMC growth requires an alkaline shift in intracellular pH (pH(i)) and we previously showed that PASMCs isolated from mice exposed to chronic hypoxia exhibited increased Na(+)/H(+) exchanger (NHE) expression and activity...
متن کاملCALL FOR PAPERS Rho GTPases in Lung Physiology and Disease Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase
Fagan, Karen A., Masahiko Oka, Natalie R. Bauer, Sarah A. Gebb, D. Dunbar Ivy, Kenneth G. Morris, and Ivan F. McMurtry. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287: L656–L664, 2004. First published February 20, 2004; 10.1152/ajplung.00090.2003.—RhoA GTPase mediates a variet...
متن کاملLung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling.
Although production of reactive oxygen species (ROS) such as superoxide (O(2)(.-)) has been implicated in chronic hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodeling, the transcription factors and gene targets through which ROS exert their effects have not been completely identified. We used mice overexpressing the extracellular antioxidant enzyme extracellular superox...
متن کاملAttenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase.
RhoA GTPase mediates a variety of cellular responses, including activation of the contractile apparatus, growth, and gene expression. Acute hypoxia activates RhoA and, in turn, its downstream effector, Rho-kinase, and previous studies in rats have suggested a role for Rho/Rho-kinase signaling in both acute and chronically hypoxic pulmonary vasoconstriction. We therefore hypothesized that activa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2003